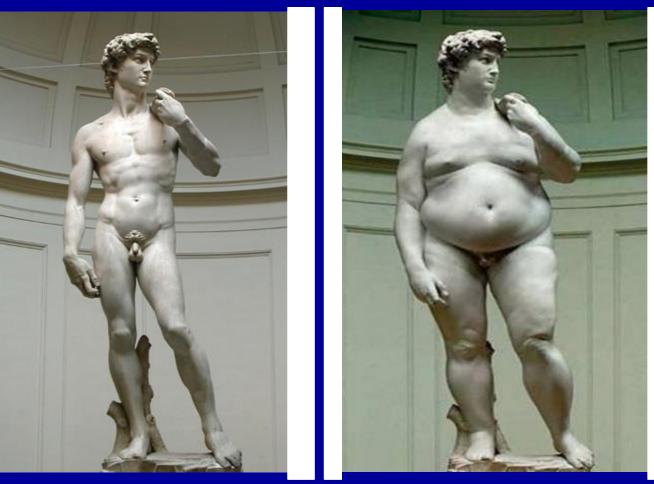
Lifestyle Factors and Breast Cancer Risk


Pamela J. Goodwin, M.D., M.Sc., F.R.C.P.C. Professor of Medicine University of Toronto

Evolution ... Lifestyle ...

Michelangelo's "David" 1501-1504

Michelangelo's "McDavid" 2012

Body Size and Breast Cancer Risk

	<u>Adverse</u>	No Effect	Protective
Current BMI	Postmenopausal E+ P+ HR 1.7 (Suzuki 2009)	Postmenopausal E- P- HR 0.90 (Suzuki 2009)	Premenopausal E+ P+ HR 0.80 (Suzuki 2009)
	Premenopausal E- P- H- HR 1.43 (Pierobon 2013)	Postmenopausal E- P- H- HR 0.99 (Pierobon 2013)	
		Premenopausal E- P- HR 1.03 (Suzuki 2009)	
Adult Weight Gain	E+P+ HR 2.03 E-P- HR 1.34 (Vrieling 2010)		
Birth Size	E+ P+ HR 1.16 (Hurley 2011)	E- P- HR 1.03 (Hurley 2011)	

Obesity and Survival in Breast Cancer

Meta-Analysis

• 43 studies published 1963-2005

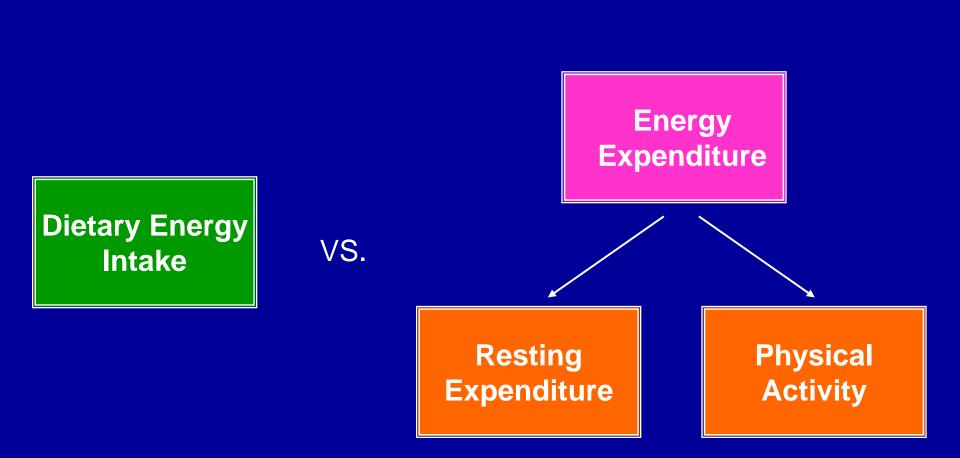
• comparison of obese vs. non-obese subjects

<u>Subgroup</u>	No. of estimates	Pooled HR (95% CI)	P-value
Survival measure			
All-cause	36	1.33 (1.21-1.47)	0.91
Breast cancer specific	19	1.33 (1.19-1.50)	
Obesity measure			
ВМІ	55	1.33 (1.23-1.44)	0.95
WHR	6	1.31 (1.14-1.50)	
Study design			
Observational cohort	48	1.36 (1.23-1.49)	0.53
Treatment cohort	7	1.22 (1.14-1.31)	
Menopausal status			
Pre-menopausal	16	1.47 (1.19-1.83)	0.25
Post-menopausal	12	1.22 (0.95-1.57)	
Both	36	1.33 (1.23-1.43)	
Year of diagnosis			
Pre-1995	30	1.31 (1.16-1.46)	0.17
Post-1995	11	1.49 (1.31-1.68)	

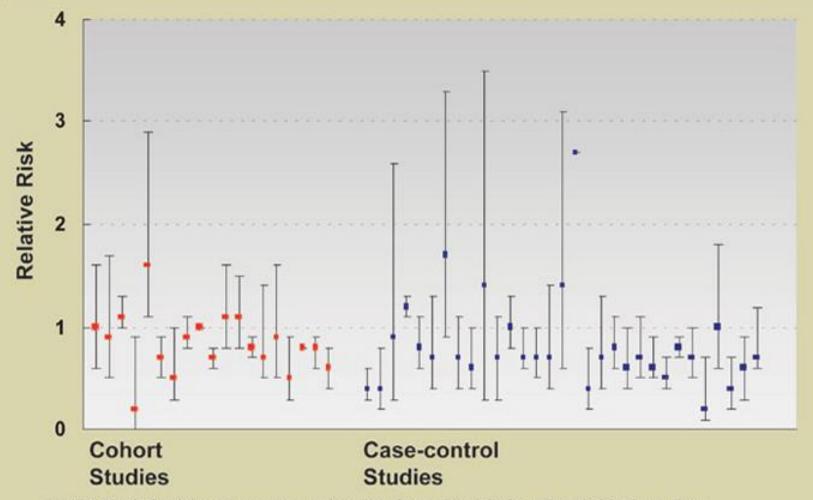
Protani M et al. BCRT 2010: 123:627-635

Effect of Obesity on Overall Survival in ER/PgR Positive Breast Cancer

				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% C	I IV, Random, 95% Cl
Azambuja 2010	0.41210965	0.20016032	6.1%	1.51 [1.02, 2.24]	
Berclaz 2004 (1)	0.11332869	0.07336252	15.9%	1.12 [0.97, 1.29]	-
Chen 2010	-0.11653382	0.2941959	3.4%	0.89 [0.50, 1.58]	
Daling 2001	0.77932488	0.30459913	3.2%	2.18 [1.20, 3.96]	
davidson 2005	0.41871033	0.12724721	10.6%	1.52 [1.18, 1.95]	
Dignam 2003	0.27002714	0.07994966	15.2%	1.31 [1.12, 1.53]	-
Enger 2004	0.39204209	0.23705169	4.8%	1.48 [0.93, 2.36]	
Goodwin 2002	0.9439059	0.44232693	1.6%	2.57 [1.08, 6.12]	
Keegan 2010	0.57097955	0.23807556	4.7%	1.77 [1.11, 2.82]	_
Majed 2008	0.0861777	0.08099556	15.1%	1.09 [0.93, 1.28]	+
Sparano 2010	0.35065687	0.11815628	11.4%	1.42 [1.13, 1.79]	-
Vitolins 2008	0.43825493	0.16578174	7.9%	1.55 [1.12, 2.15]	
Total (95% CI)			100.0%	1.35 [1.20, 1.51]	•
Heterogeneity: Tau ² =	0.02; Chi ² = 21.22. df	= 11 (P = 0.0	3); ² = 489	%	
Test for overall effect:		-			0.1 0.2 0.5 1 2 5 10 Favours obese Favours non-obese


Niraula S and Goodwin PJ 2011

Effect of Obesity on Overall Survival in ER/PgR Negative Breast Cancer


				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Azambuja 2010	0.3435897	0.1702273	10.6%	1.41 [1.01, 1.97]	
Berclaz 2004	0.15700375	0.09564612	21.2%	1.17 [0.97, 1.41]	+
Chen 2010	0.81536481	0.25538942	5.5%	2.26 [1.37, 3.73]	
Daling 2001	0.53062825	0.32449003	3.6%	1.70 [0.90, 3.21]	
Dignam 2006	0.14842001	0.10729555	19.0%	1.16 [0.94, 1.43]	+
Fetting 1998	-0.16251893	0.80497364	0.6%	0.85 [0.18, 4.12]	• •
Goodwin 2002	0.3852624	0.66406992	0.9%	1.47 [0.40, 5.40]	
Keegan 2010	0.03922071	0.38397165	2.7%	1.04 [0.49, 2.21]	
Majed 2008	-0.03045921	0.11781112	17.1%	0.97 [0.77, 1.22]	
Sparano 2010	0.04879016	0.15312033	12.3%	1.05 [0.78, 1.42]	_ _
Vitolins 2008 (1)	0.3852624	0.23359261	6.4%	1.47 [0.93, 2.32]	+
Total (95% CI)			100.0%	1.21 [1.07, 1.37]	◆
Heterogeneity: Tau ² =	0.01; Chi ² = 13.48, df	= 10 (P = 0.2	0); l ² = 26	%	
Test for overall effect:					0.5 0.7 1 1.5 2 Favours obese Favours non-obese

Niraula S and Goodwin PJ 2011

Obesity Reflects Energy Imbalance

Research Summary: Physical Activity and Breast Cancer Risk

Lee IM. Physical activity and cancer prevention—data from epidemiologic studies. *Med Sci Sports Exerc.* 2003;35:1823–1827. Reprinted with permission from Medscape.

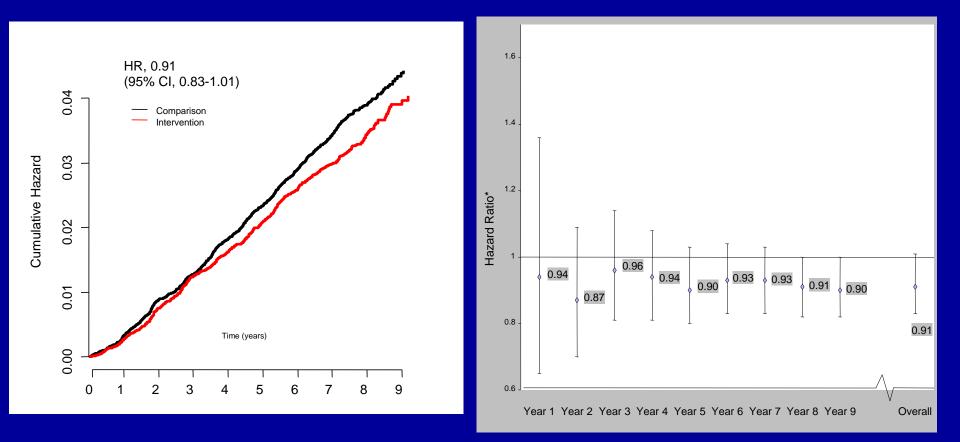
ASCO

Physical Activity and Breast Cancer Risk

- >20 cohort, >30 case-control studies
- Modest reduction in breast cancer risk with increased lifetime recreational physical activity
 - Nurses' Health Study RR 0.82 (0.70 – 0.97) 7 hrs/wk vs < 1hr/wk
 - ACS Cancer Prevention Study II (Postmenopausal)
 RR 0.71 (0.49-1.02) > 40 MET hr/wk vs. 0-7 MET hrs/wk
- Moderate to vigorous physical activity for > 3 hours per week associated with 30-40% reduced breast cancer risk
- Protective effect may be stronger after the menopause

Physical Activity and Breast Cancer Outcomes

Holmes	NHS	Recreational physical act	vity 2 years pos	st-diagno	sis; ≥9 met hours per week (vs. < 3)
JAMA 2005 n=2987	Death BC Death Recurrence		HR 0.59 HR 0.50 HR 0.57	p=0.03 (trend) p=0.004 (trend) p=0.05 (trend)	
Abrahamson	n=1264	Recreational physical act	vity 1 year pre-	diagnosis	3
Cancer 2006					rtality
		All Subjects		Q4 HR=0.78 (vs. Q1
		BMI* ≥ 25		HR=0.70 (
		< 25			0.77-1.52)
		* Interaction p=	0.05	× ×	
Holick	n=4482	• Recreational physical act	vity 5-6 years p	oost-diagn	oosis; 8-20.9 met hours per week (vs.
CEBP 2008	CWLS	< 2.8) BC death (26% Non BC death		HR=0.53 HR=0.52	p=0.01 (trend) p<0.001 (trend)
<u>lrwin</u>	HEAL	Total physical activity 9 met hours vs. inactive			
JCO 2008	n=933	Year Pre-diag 2 Years Post-o		HR 0.6 HR 0.3	n an
Sternfeld	LACE	Total physical activity up	to 3+ vears pos	st-diagnos	sis
CEBP 2009	n=1970				vs. Q1
		Death		HR 0.76	p=0.20 (trend)
		BC Death		HR 0.87	p=0.41 (trend)
		Recurrence		HR 0.91	p=0.78 (trend)
<u>Chen</u>	Shanghai	• Recreational physical activity 36 months post-diagnosis (8.3 met hours per			
2011	n=1826	0) BC recurrence Death (any ca	e and/or death use)	HR 0.59 HR 0.65	(0.45-0.76) (0.05-0.84)


BC Risk: Women's Health Initiative (WHI) – Low Fat Diet RCT

Population:48,835 postmenopausal women 50-79 x = 62.3 yearsNo prior breast cancer; 8.1 year average follow-upGail model risk ≥1.7% / 5 years

Intervention:	Fat Fruits/Vegetables Grains	<mark>Goal</mark> 20% cals ≥ 5/day ≥ 6/day	Intervention vs. Control 10.7% year 1, 8.1% yr 6 1 serving transient difference	
<u>Results:</u>	Invasive Breast Cancer	HR 0.91 (0.83-1.01) (0.42% vs. 0.45% annualized)		
	Greatest Effect	1) More adherent women <i>HR 0.85 (0.71-1.02)</i>		
		 2) Higher fat intake at baseline HR 0.78 (0.64-0.95) Q4 p (trend) 0.04 		
		3) ER/PgR discordant cancer HR 0.64 (0.49-0.84) ER+ PgR- HR 0.67 (0.29-1.54) ER- PgR+		

Prentice RL et al JAMA 2006; 295:629

WHI Dietary Fat Reduction Trial Breast Cancer Cumulative Hazard Ratios

BC Outcomes: Women's Intervention Nutrition Study (WINS)

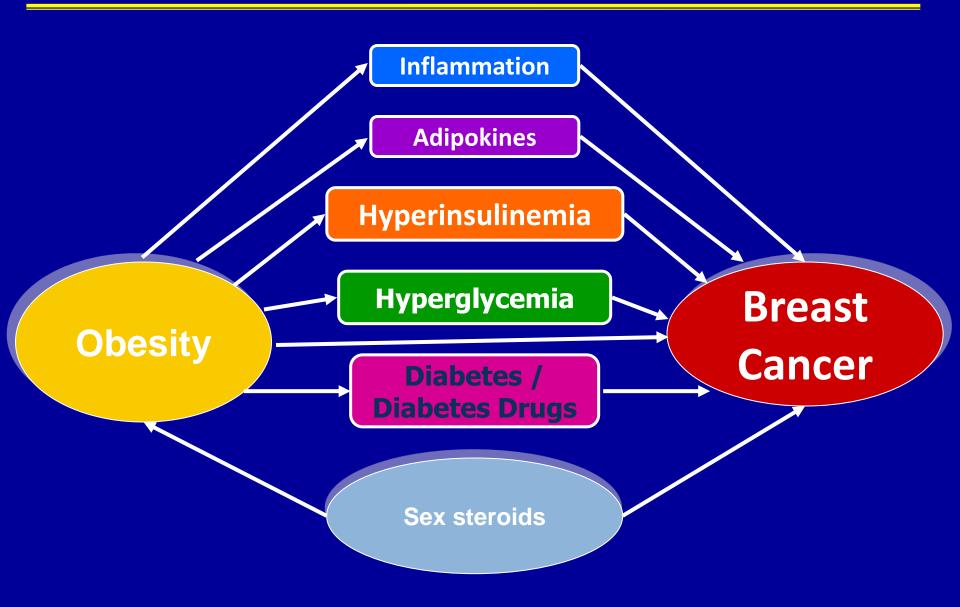
RCT of dietary fat reduction in postmenopausal women with breast cancer

		12 MONTHS				
			Fat gram / da	<u>y Weight Ch</u>	ange	
Interver	ntion		33.3 ± 16.7	-2.1 kg		
Control			51.3 ± 24.4	+0.2 kg		
		pvalue	<0.001	<0.05		
		<u>Relapse Free Survival</u> (60 months)				
	<u>Diet</u>	Co	ontrol	HR	<u>p(2 tail)</u>	
All	96/975	181/1462 0		0.76 (0.60-0.98)	0.034	
ER+	68/770	12	2/1189 ().85 (0.63-1.14)	0.277	
ER-	28/205	5	9/273 (0.58 (0.37-0.91)	0.018	

• n=2437 age 48-79

Chlebowski R et al JNCI 2006

WINS vs. WHEL


	<u>WINS</u>	<u>WHEL</u>
Population		
Number	2437	3088
Time Post	Up to 1 year	Up to 4 years
Diagnosis	Post	Pre and Post
Menopausal Status	48-79	18-70
Age		
Intervention Group		
Fat Intake	Reduction maintained	Transient reduction
Weight Change	2.3 kg. relative loss	Modest weight gain
DFS	HR 0.76 (0.60-0.98)	HR 0.96 (0.80-1.14)

Obesity and Breast Cancer

Summary

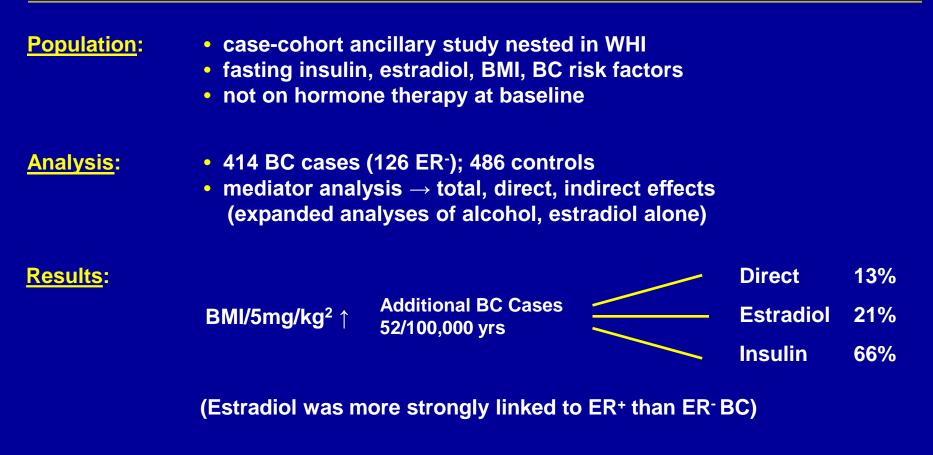
	<u>Risk</u>	<u>Prognosis</u>
Obesity	Adverse - Postmenopausal E+P+, Premenopausal TN <u>Protective</u> - Premenopausal E+P+	Adverse
Physical Inactivity	Adverse	Adverse
High Dietary Fat	Possibly Adverse (WHI)	Possibly Adverse (WINS/WHEL)

Obesity and Breast Cancer Potential Mechanisms

Serum Sex Hormones in Postmenopausal Women n=176

	<u>Estrone</u> (pg/ml)	<u>Estradiol</u> (pg/ml)
BMI		
≤ 27.0	27.5	3.4
27.1-30.0	33.6	5.2
≥ 30.1	38.9	6.3
ρ	< 0.001	< 0.001
Correlation with BMI	r=0.38, p<0.001	r=0.41, p<0.001

Cauley JA et al AM J Epidemiol 1989


Interaction Between BMI / HRT and Breast Cancer

	Absolute Increase in Breast Cancer Risk			
	per 5 Years of HRT Use			
<u>BMI</u>	Estrogen Alone	<u>Estrogen + Progesterone</u>		
20 kg/m ²	+ 30%	+ 50%		
30 kg/m ²	+ 8%	+ 26%		

Potential Interpretation: There is a ceiling for estrogen effect on BC risk – because estradiol levels are higher in obese women, added effects of HRT are less.

Pike MC et al. Ernst Schering Foundation Symposium Proceedings 2007

Mediating Effects of Estrogen and Insulin in the Relation Between Obesity and Breast Cancer Risk

<u>Conclusions</u>:

 Insulin may be a more important mediator than estradiol of the association of BMI with postmenopausal BC risk

Hvidtfeldt UA et al. CEBP 2012; 21:1202-1212

Prospective Study of the Role of Glucose Metabolism in Breast Cancer Occurrence

Population

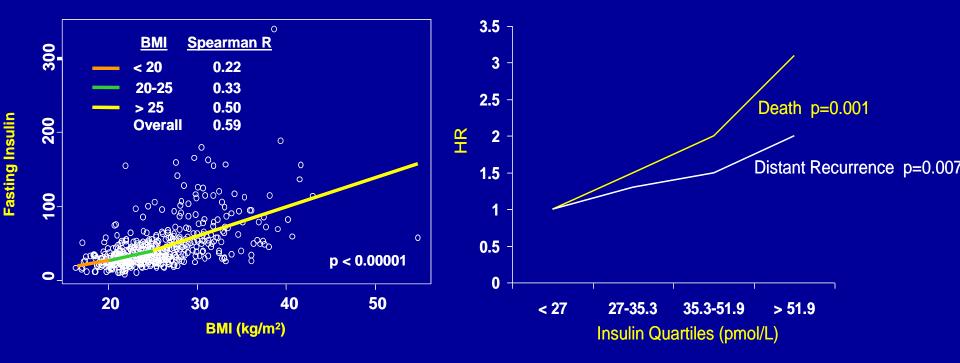
- prospective ORDET cohort (1987-1992) n=10,663
- 356 breast cancers (median follow-up 13.5 years)
- up to 4 controls / case (age, menopausal status, length of storage

	<u>Breast Cancer Risk</u> (Quartile 4 vs. 1)			
	HR (95% CI) p (trend)			
Glucose	1.63 (1.14-2.32)	0.003*		
Insulin	1.33 (0.96-1.86)	0.069**		
HOMA – IR	1.44 (1.03-2.02)	0.029**		
SHBG	0.72 (0.51-1.02)	0.07		

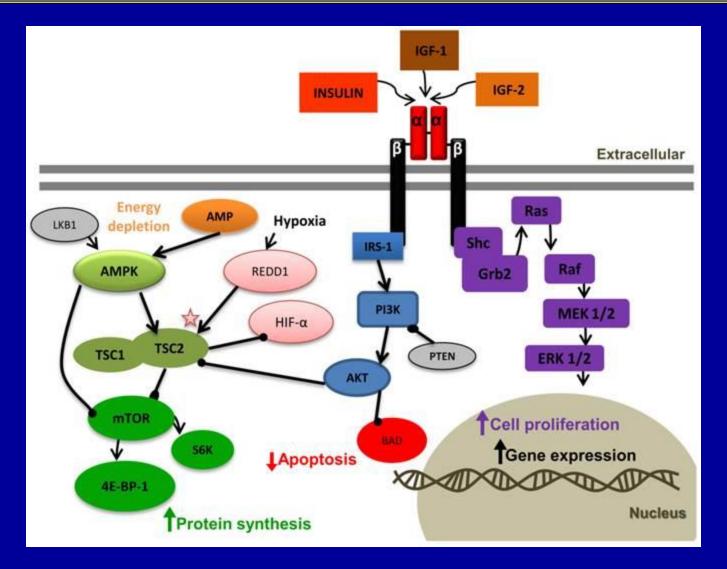
* significance persisted in pre/post menopausal subgroups

** also significant in subgroups < 55 years at diagnosis

Conclusions


Hyperglycemia and insulin resistance are associated with increased breast cancer risk

Results


Sieri S et al. Int J Cancer 2011

Insulin is Associated with Poor Breast Cancer Outcomes Goodwin PJ ASCO 1999, JCO 2002

Pasanisi 2006, Irwin 2010, Duggan 2010, Emaus 2010, Pritchard 2011

IGF-1R Signaling Pathway

Braun S et al. Int J Biol Sci 2011; 7:1003-1015

Prospective Study of the Role of Glucose Metabolism in Breast Cancer Occurrence

Population

- prospective ORDET cohort (1987-1992) n=10,663
- 356 breast cancers (median follow-up 13.5 years)
- up to 4 controls / case (age, menopausal status, length of storage

	<u>Breast Cancer Risk</u> (Quartile 4 vs. 1)		
	HR (95% CI)	p (trend)	
Glucose	1.63 (1.14-2.32)	0.003*	
Insulin	1.33 (0.96-1.86)	0.069**	
HOMA – IR	1.44 (1.03-2.02)	0.029**	
SHBG	0.72 (0.51-1.02)	0.07	

* significance persisted in pre/post menopausal subgroups

** also significant in subgroups < 55 years at diagnosis

Conclusions

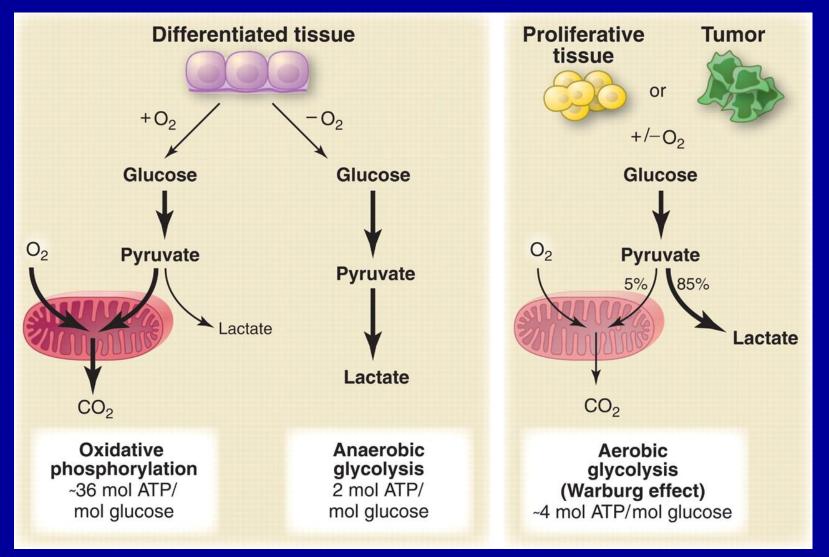
Hyperglycemia and insulin resistance are associated with increased breast cancer risk

Results

Sieri S et al. Int J Cancer 2011

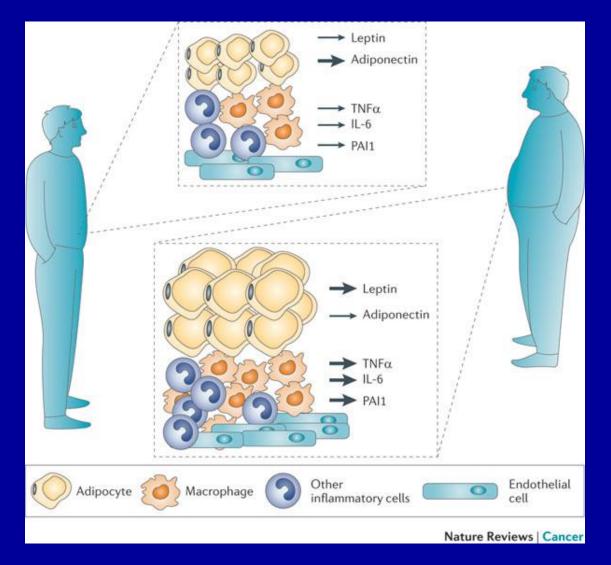
Fasting Glucose and Breast Cancer Outcomes

<u>Population</u>: • 512 early stage breast cancer

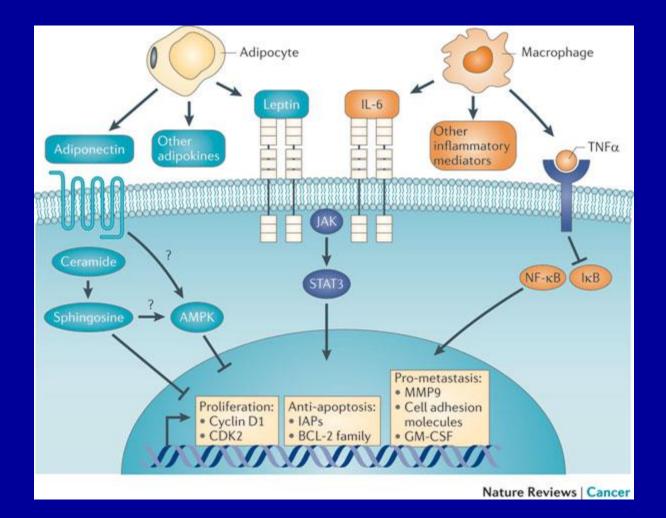

• no known diabetes

<u>Results</u> :	Quartile		DDFS		OS		
	Mean	Range	HR (adjusted	(95% CI))*	HR (adjusted)*	(95% CI)	
	4.5	3.5-4.7		1		1	
	4.9	4.7-5.1	1.28	(1.02-1.60)	1.26	(0.93-1.70)	
	5.2	5.1-5.4	1.50	(1.04-2.17)	1.46	(0.89-2.40)	
	5.7	5.4-11.6	1.88	(1.06-3.35)	1.81	(0.83-3.93)	
			p=0.02	p=0.027 unadjusted		6 unadjusted	
			p=0.034 adjusted		p=0.014	4 adjusted	

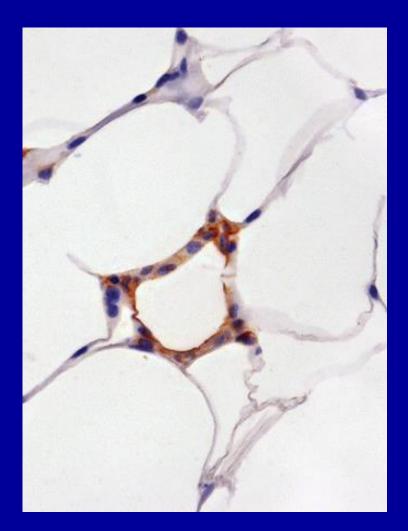
* adjusted for age, T, N, grade, hormone receptor, chemotherapy, hormone therapy


Goodwin PJ et al. J Clin Oncol 2012

<u>Rapidly Proliferating Tissue</u> <u>Metabolizes Glucose "Inefficiently"</u>


Vander Heiden MG et al. Science 2009; 324:1029-1033

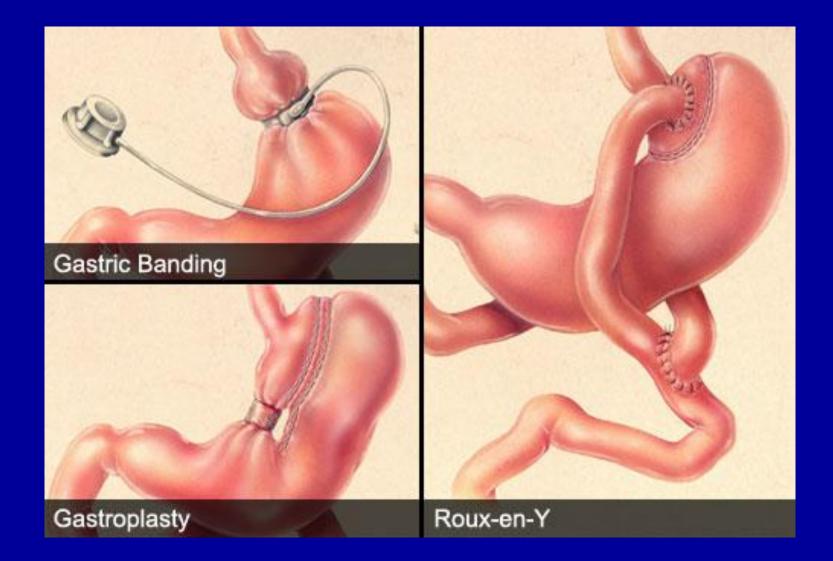
Changes in Adipose Tissue in Obesity


Khandekar MJ et al. Nat Rev Cancer 2011; 11:886-895

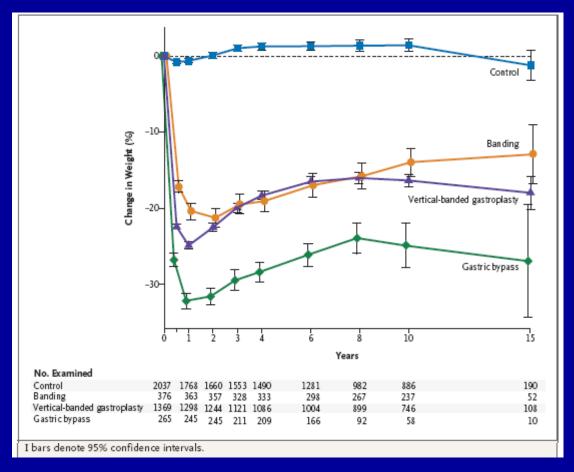
Adipokine and Inflammatory Signalling in Obesity

Khandekar MJ et al. Nat Rev Cancer 2011; 11:886-895

Local Inflammation: Crown-Like Structures Necrotic adipocytes surrounded by macrophages (Subbaramaiah K et al. Cancer Prevention Research 2011)


LISA Study – RCT of a Telephone Based Weight Loss Intervention vs. Education

- 19 phone calls over 2 years based on Diabetes Prevention Program
- Goals \rightarrow up to 10% weight loss (to BMI \geq 21 kg/m²)
 - → calorie deficit 500-1000 kcal per day
 - → physical activity 150-200 minutes per week

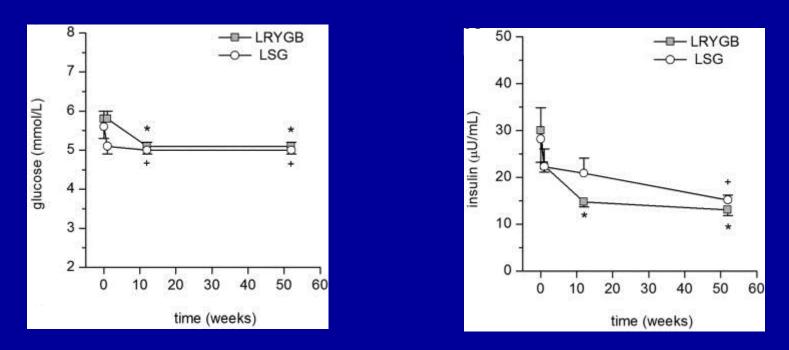

	Effect on Weight (kg)*	
	Intervention n=165	Control n=158
Baseline	82.8	81.3
6 months	-4.7 (5.7%)	-0.2 (0.2%)
12 months	-5.5 (6.6%)	-0.7 (0.8%)
18 months	-3.8 (4.6%)	-0.3 (0.4%)

* Effect similar in women with BMI \leq 30 kg/m² or > 30 kg/m²

PJ Goodwin (PI) / R Segal (Call Center Lead) / OCOG ASCO 2011

Mean Percent Weight Change in the Control Group and the Surgery Group According to the Method of Bariatric Surgery

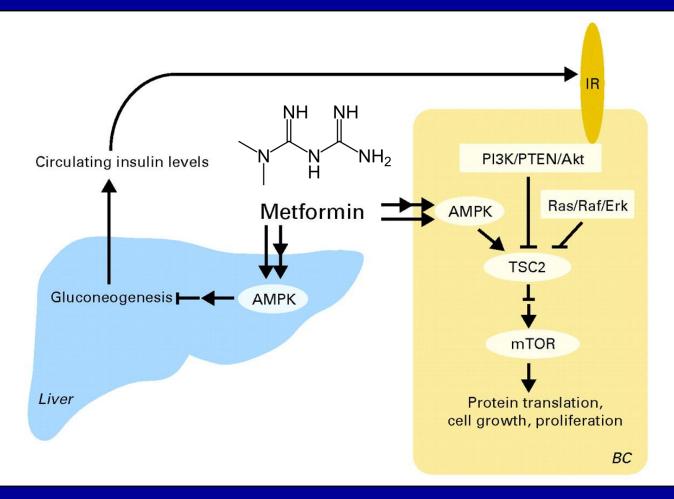
Sjöström L et al. NEJM 2007;357:741-752


Intentional Weight Loss and Breast Cancer Risk

Cohort Stud	<u>lies</u>		Weight Loss	Breast Cancer Risk
Eliassen	2006		≥ 14.5%	↓ 57%
Harvie	2005		≥ 5%	↓64%
Parker	2003		> 20 pounds	↓19%
Bariatric Su	<mark>irgery Sti</mark>	<u>idies</u>	Weight Loss	All Cancer Risk
Sjöström	2009	(women)	31.9%	↓ 42%
Adams	2009	(women)	31.0%	↓ 27% (BC 9%)
Christou	2008	(both)	31.9%	↓ 78% (BC 83%)

Change in Physiologic Mediators		
Decrease	Increase	
Estradiol (3X)	SHBG	
Insulin (3X)	± IGFBPs	
CRP (3X)	± IGF-I	
TNF-α		
IL-6		
\pm IGFBPs, IGF-1		

Byers T et al. Diab Obes Met 2011


Insulin and Glucose Improve Post Bariatric Surgery **BEFORE** Major Weight Loss

LRYGB = laparoscopic Roux-en-Y gastric bypass LSG = laparascopic sleeve gastrectomy

Woelnerhanssen B et al. Surg Obes Relat Dis 2011; 7:561-568

Mechanism of Metformin Action in the Clinical Setting

Adapted from Goodwin P J et al. J Clin Oncol 2009; 27:3271-3273

NCIC CTG MA.32 STUDY SCHEMA

T1–3*, N0-3,M0 invasive breast cancer diagnosed within 1 year Any radiotherapy, chemotherapy**, endocrine therapy, trastuzumab, biologics, bisphosphonates

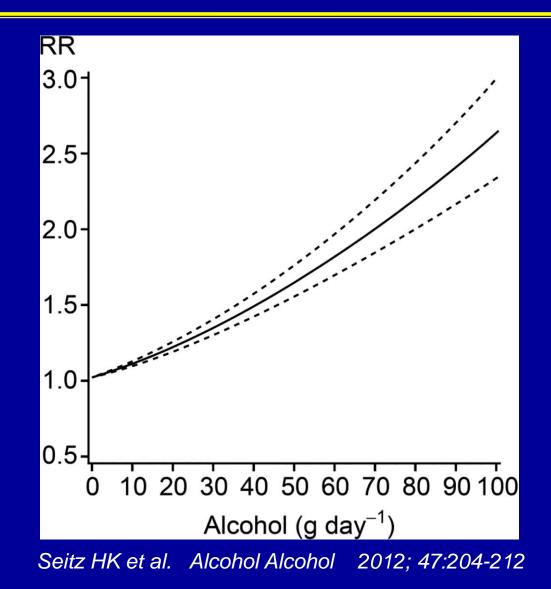
If pT1C, ≥ 1 adverse prognostic factor
** CXT must be completed

Metformin 850 mg po bid X 5 years (includes 4-week ramp-up of 850mg po daily)

Identical Placebo One caplet po bid X 5 years (includes 4 week ramp-up of one caplet po daily)

Primary Outcome:	Invasive cancer free survival
Secondary Outcome:	Overall survival, Distant Disease-Free Survival, Breast Cancer Free Interval, Adverse Events, Hospitalization (CV, diabetes), QOL (888 subjects)
Embedded Correlative:	Weight, Fasting Insulin (baseline, 6 months, 5 years), Tumour Tissue
Sample Size:	3,582 (431 events) – 5 year IDFS 0.85 in placebo arm, HR =0.76, α=0.05 β=0.20
	2 interim analyses (benefit, futility) at 144 and 288 events
	Planned subset analyses (α=0.10, 2 sided; β=0.80) in ER/PgR neg (HR 0.65) and Triple Neg (HR 0.55)

FUNDED BY: NCI (US), CCSRI, BCRF, Apotex Canada, CBCF, OICR


Change from Baseline at 6 Months

	Metfor n=23		Place n=2		<u>Change</u>		
	Change	%	Change	%	p(2-tail) (Wilcoxon)	Interaction with Baseline BMI	Interaction with Baseline Insulin
Weight (kg)	-1.96	- 2.6	+0.40	+ 0.5	<0.0001	0.32	0.17
BMI (kg/m²)	-0.74	- 2.6	+0.15	+ 0.5	<0.0001	0.27	0.19
Glucose (mmol/L)	-0.1	- 1.9	+0.04	+ 0.8	<0.001	0.97	0.17
Insulin (pmol/L)	-7.88	-11.5	-1.78	- 2.5	0.027	0.79	0.84
HOMA* (n=331)	-0.08	- 4.0	+0.06	+ 2.6	0.014	0.56	0.89
Leptin (ng/ml)	-1.53	- 9.7	+1.42	+ 9.0	<0.0001	0.20	0.27
hs-CRP (µg/L)	-0.2	- 7.3	+0.84	+31.3	0.005	0.67	0.59

calculated from glucose and insulin in the 331 with blood draws for both on the same date

ALCOHOL SNOKING

Dose-Risk Function Between Alcohol Consumption and Breast Cancer (extracted from Bagnardi et al. Br J Cancer 2001; 85:1700-1705)

Summary of Meta-Analysis and Pooled Analysis of Smoking Pack-Years, NAT2 Acetylators Status, Menopausal Status and Breast Cancer Risk

		NAT2 slow acetylators		NAT2 rapid acetylators	
Type of analysis	Pack-years*	Premenopausal RR (95% CI)	Postmenopausal RR (95% CI)	Premen opausal RR (95% CI)	Postmenopausal RR (95% CI)
Meta-analysis	Never active	1.00	1.00	1.00	1.00
	<20	1.21 (1.00 to 1.45)	1.28 (1.08 to 1.50)	1.00 (0.80 to 1.24)	1.12 (0.93 to 1.36)
	≥20	1.47 (1.08 to 2.01)	1.41 (1.15 to 1.72)	1.34 (0.94 to 1.89)	0.98 (0.77 to 1.26)
Pooled analysis	Never active	1.00	1.00	1.00	1.00
-	<20	1.05 (0.86 to 1.28)	1.23 (1.03 to 1.46)	0.91 (0.72 to 1.16)	1.10 (0.89 to 1.35)
	≥20	1.49 (1.08 to 2.04)	1.42 (1.16 to 1.74)	1.29 (0.89 to 1.86)	0.88 (0.69 to 1.13)

Bold type indicates statistically significant increases in summary risk.

Source: Ambrosone et al.14

*Pack-years as a categorical variable were available from the following eight studies for meta-analysis: Ambrosone et al., 1996; Morabia et al., 2000; Chang-Claude et al., 2002; Egan et al., 2003; van der Hel et al., 2003; Alberg et al., 2004; Sillanpaa et al., 2005; Lissowska et al., 2006. Pack-years as a categorical variable were available from the following six studies for the pooled analysis: Ambrosone et al., 1996; Morabia et al., 2000; Chang-Claude et al., 2005; Lissowska et al., 2006. Pack-years as a categorical variable were available from the following six studies for the pooled analysis: Ambrosone et al., 1996; Morabia et al., 2000; Chang-Claude et al., 2002; Egan et al., 2003; van der Hel et al., 2003; Lissowska et al., 2006.

Johnson KC et al. Tobacco Control 2011; 20:e2

Lifestyle and Breast Cancer Conclusions I

- Obesity rates are increasing in the US and around the world
- Obesity has been associated with increased postmenopausal breast cancer risk and adverse cancer outcomes
- Physical inactivity has been associated with increased breast cancer risk and poor outcomes
- Several potential biologic mediators of lifestyle effects have been identified, a multifactorial biologic basis is likely

Lifestyle and Breast Cancer Conclusions II

- Modest weight loss is difficult, but feasible
- Maintenance of weight loss is even harder
- Interventions may include lifestyle change, bariatric surgery and targeted agents
- The obesity-cancer link is a testable hypothesis
- In the prevention setting, the need for large sample sizes improvement in non-cancer outcomes before cancer outcomes are reached may limit the feasibility of RCTs

Collaborators

<u>Clinical</u>
Wendy Parulekar
Karen Gelmon
George Fantus
Kathy Pritchard
MA32 Steering Committee
Saroj Niraula
Lorraine Lipscombe
Roanne Segal
Pathology
<u>Pathology</u> Lois Shepherd
Lois Shepherd
Lois Shepherd France O'Malley
Lois Shepherd France O'Malley Anna Marie Mulligan
Lois Shepherd France O'Malley Anna Marie Mulligan Susan Done

Ryan Dowling

Statistics

Marguerite Ennis

Bingshu Chen

Research Staff

Nicky Hood

Samantha Beddows

FUNDERS:

CBCRA

CCSRI

CBCF

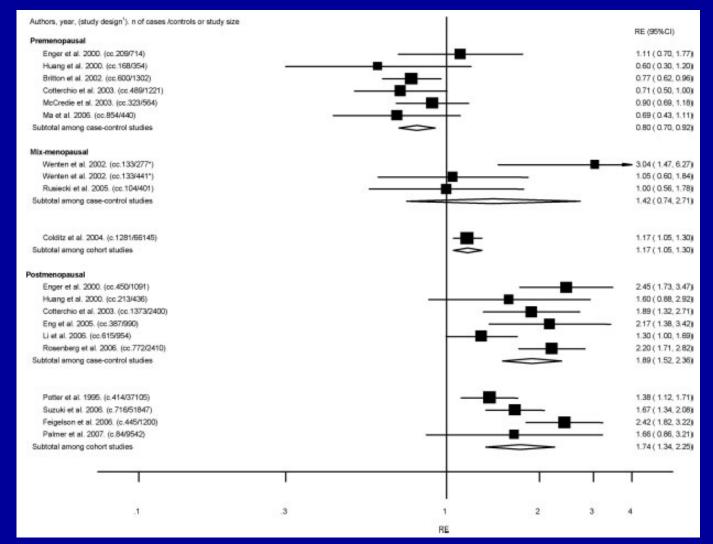
BCRF

Komen

NCI (US)

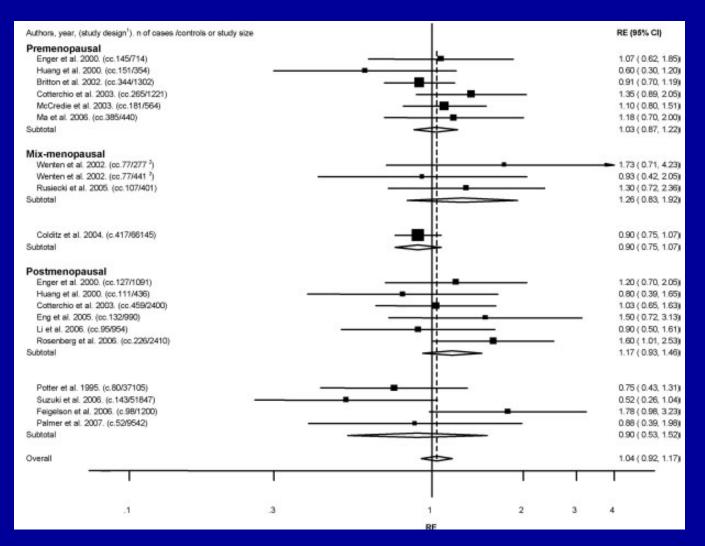
Thousands of patients who have participated in our studies

Sir Frederick Banting



BMI and CANCER RISK: WOMEN

Cancer site and type Num	per of studies		RR (95% CI)	Р	I ²
Endometrium	19		1.59 (1.50-1.68)	<0.0001	77%
Gallbladder	2		1.59 (1.02-2.47)	0.04	67%
Oesophageal adenocarcinom	a 3		- 1.51 (1.31-1.74)	<0.0001	0%
Renal	12		1.34 (1.25–1.43)	<0.0001	45%
Leukaemia	7		1.17 (1.04–1.32)	0.01	80%
Thyroid	3		1.14 (1.06–1.23)	0.001	5%
Postmenopausal breast	31	-	1.12 (1.08–1.16)	<0.0001	64%
Pancreas	11		1.12 (1.02-1.22)	0.01	43%
Multiple myeloma	6	+	1.11 (1.07–1.15)	<0.0001	0%
Colon	19	+	1.09 (1.05-1.13)	<0.0001	39%
Non-Hodgkin lymphoma	7		1.07 (1.00-1.14)	0.05	47%
Liver	1		1.07 (0.55-2.08)		
Gastric	5	-	1.04 (0.90-1.20)	0.56	4%
Ovarian	13	+	1.03 (0.99-1.08)	0.30	55%
Rectum	14	+	1.02 (1.00-1.05)	0.26	0%
Malignant melanoma	5		0.96 (0.92-1.01)	0.05	0%
Premenopausal breast	20		0.92 (0.88-0.97)	0.001	39%
Lung	6	—	0.80 (0.66-0.97)	0.03	84%
Oesophageal squamous	2		0.57 (0.47-0.69)	<0.0001	60%
	0.5 0.8	3 1.0 1.5	2.0		
	Risk ratio (p	er 5 kg/m ² increase	e)		


Renehan et al. Lancet 2008;371:569–578

Risk Estimates from Epidemiological Studies Estimating Association Between Body Weight and the Risk of <u>ER+ PR+</u> Breast Cancer

Suzuki R et al. Int J Cancer 2009; 124:698-712

Risk Estimates from Epidemiological Studies Estimating Association Between Body Weight and the Risk of <u>ER⁻ PR⁻</u> Breast Cancer

Suzuki R et al. Int J Cancer 2009; 124:698-712

Association Between Adult Weight Gain and ER⁺ PR⁺ Breast Cancer Risk

First author, year (no. of cases / study size or controls)	RE (95% CI)	
Cohort studies, ER+PR+ Feigelson, 2006 (445 / 44,161) post Ahn, 2007 (202 / 99,039) post Palmer, 2007 (82 / 9,542) post	2.42 (1.82 , 3.23) 2.69 (1.74 , 4.17) 1.29 (0.73 , 2.28)	
Pooled estimate, cohort ER+PR+	2.17 (1.48 , 2.85)	•
Case-control studies, ER+PR+ Wenten, 2002 (133 / 813) non-Hispanic mixed Wenten, 2002 (133 / 813) Hispanic mixed Enger, 2000 (450 / 1,091) post Eng, 2005 (387 / 1,006) post Rosenberg, 2006 (622 / 3,065) post	1.05 (0.6 , 1.84) - 3.04 (1.47 , 6.26) 2.32 (1.58 , 3.41) 2.17 (1.38 , 3.42) 2.7 (1.9 , 3.8)	
Pooled estimate, case-control ER+PR+	2.25 (1.69 , 2.81)	•
Case-control studies, ER+ Slattery, 2007 (801 / 1,577) non-Hispanic mixed Slattery, 2007 (379 / 898) Hispanic mixed Han, 2006 (510 / 1,495) post	1.13 (0.85 , 1.5) 1.17 (0.73 , 1.86) 2.42 (1.62 , 3.61)	₽
Pooled estimate, case-control ER+	1.57 (0.74 , 2.4)	◆
Pooled estimate, all studies	2.03 (1.62 , 2.45)	

Vrieling A et al. Breast Cancer Res Treat 2010; 123:641-649

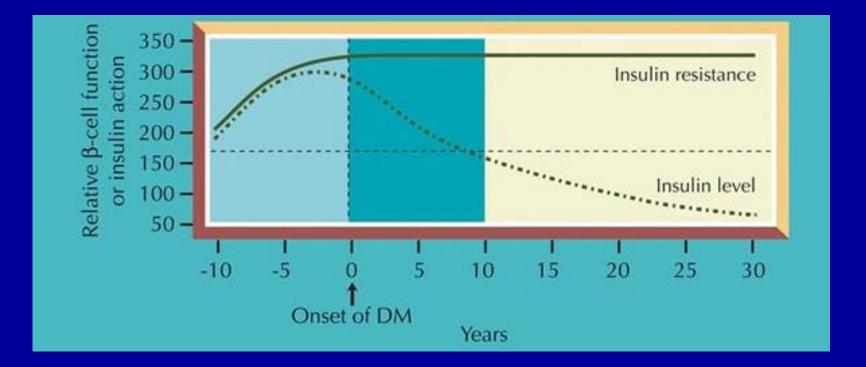
Association Between Adult Weight Gain and ER⁻ PR⁻ Breast Cancer Risk

First author, year (no. of cases / study size or controls)	RE (95% CI)	
Cohort studies, ER-PR- Feigelson, 2006 (98 / 44,161) post Ahn, 2007 (53 / 99,039) post Palmer, 2007 (52 / 9,542) post	1.78 (0.98 , 3.23) 0.61 (0.21 , 1.82) 1.03 (0.52 , 2.05)	• •
Pooled estimate, cohort ER-PR-	1.23 (0.57 , 1.9)	◆
Case-control studies, ER-PR- Wenten, 2002 (77 / 813) non-Hispanic mixed Wenten, 2002 (77 / 813) Hispanic mixed Enger, 2000 (127 / 1,091) post Eng, 2005 (132 / 1,006) post Rosenberg, 2006 (189 / 3,065) post	0.93 (0.42 , 2.05) 1.73 (0.71 , 4.25) 1.75 (0.91 , 3.38) 1.5 (0.38 , 6.35) 1 (0.5 , 2.1)	
Pooled estimate, case-control ER-PR-	1.37 (1 , 1.73)	◆
Case-control studies, ER- Slattery, 2007 (195 / 1,577) non-Hispanic mixed Slattery, 2007 (130 / 898) Hispanic mixed Han, 2006 (136 / 1,495) post	1.81 (1.07 , 3.08) 0.72 (0.35 , 1.49) 1.19 (0.58 , 2.43)	∎ ₩
Pooled estimate, case-control ER-	1.28 (0.63 , 1.93)	◆
Pooled estimate, all studies	1.36 (1.14 , 1.58)	↓ 1 2 3 4 5 6

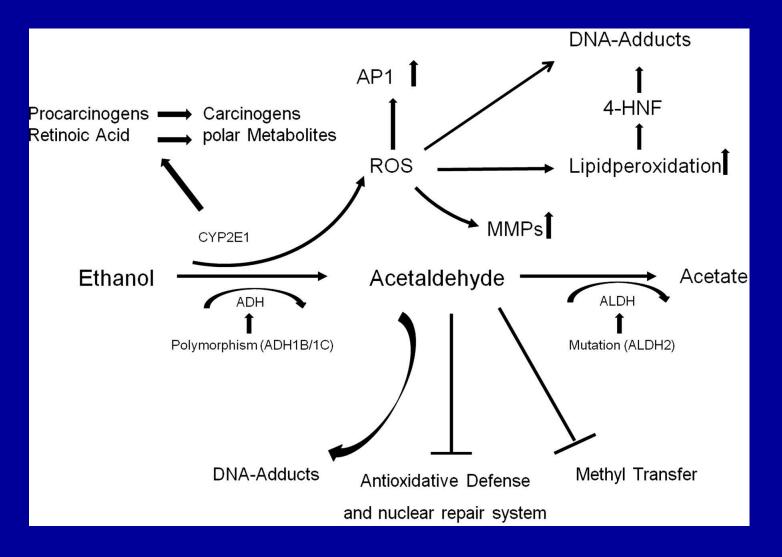
Vrieling A et al. Breast Cancer Res Treat 2010; 123:641-649

Adjusted ORs and 95% Cls for Invasive Breast Cancer Associated with Birth Weight and Birth Length, by Tumor Hormone Receptor Status

	# Cases	OR	95% CI	# Cases	OR	95% CI	p (Interaction)**
	Estrogen red	ceptor positive		Estrogen rec	ceptor negativ	e	
Birth weight (g)	1,810			1,139			
<2,500	94	1.00	-	68	1.00	-	
2,500-2,999	347	1.02	0.78, 1.32	226	0.95	0.70, 1.28	
3,000-3,499	767	1.12	0.87, 1.43	479	1.00	0.75, 1.33	
3,500-3,999	488	1.26	0.98, 1.63	295	1.09	0.81, 1.46	
≥4,000	114	1.16	0.85, 1.58	71	1.03	0.71, 1.49	0.21
Trend p-value		0.01			0.27		
Birth length (inches)	1,791			1,129			
≤ 19	527	1.00	-	360	1.00	-	
>19-20	687	1.13	1.00, 1.28	429	1.03	0.89, 1.20	
>20	577	1.25	1.09, 1.43	340	1.06	0.90, 1.25	0.09
Trend p-value		< 0.01			0.47		
	Progesteron	e receptor posi	itive	Progesteron	e receptor neg	gati ve	
Birth weight (g)	1,613			1,255			
<2,500	80	1.00	-	79	1.00	-	
2,500-2,999	308	1.04	0.79, 1.38	249	0.90	0.68, 1.20	
3,000-3,499	696	1.17	0.90, 1.52	515	0.94	0.72, 1.23	
3,500-3,999	422	1.24	0.95, 1.63	342	1.10	0.83, 1.46	
≥4,000	107	1.23	0.89, 1.71	70	0.90	0.63, 1.29	0.15
Trend p-value		0.02			0.23		
Birth length (inches)	1,595			1,242			
15-19	458	1.00	-	403	1.00	-	
>19-20	610	1.15	1.00, 1.31	471	1.02	0.88, 1.18	
>20	527	1.30	1.13, 1.49	368	1.04	0.89, 1.22	0.11
Trend p-value		< 0.01			0.61		


Models adjusted for race, birth year, gestational age, birth order, matemal age, and paternal age

Numbers do not always add to total due to missing values


Cases with unknown hormone receptor status were excluded from the analyses

** p-Value for interaction computed from likelihood ratio tests from polytomous logistic regression models comparing fit of model with a common slope for all breast cancer outcomes to one that allows for different slopes for tumors with different hormone receptor status

Hurley S et al. Cancer Causes Control 2011; 22:1461-1470

Ethanol Metabolism and Its Possible Role in Breast Carcinogenesis

Seitz HK et al. Alcohol Alcohol 2012; 47:204-212

Summary Risk Estimates for Breast Cancer Risk Associated with Ever Regular Secondhand Smoke Exposure in the Reports from the California EpA and US Surgeon General

	California EPA report⁴			Surgeon eral's report ⁵
Exposure	N RR (95% CI)		Ν	RR (95% CI)
All studies	19	1.25 (1.08 to 1.44)	21	1.20 (1.08 to 1.35)
Premenopausal or women <50 (California EPA)/premenopausal (Surgeon General)	14	1.68 (1.31 to 2.15)	11	1.64 (1.25 to 2.14)
Premenopausal: studies with lifetime exposure assessment	5	2.20 (1.69 to 2.87)	6	1.85 (1.19 to 2.87)
Postmenopausal	9	*	10	1.00 (0.88 to 1.12)

*The California EPA did not report a summary risk estimate for postmenopausal women but concluded that risk estimates from the nine studies with data on postmenopausal women 'cluster around a null association'.

Johnson KC et al. Tobacco Control 2011; 20:e2

IR, IGFIR in Human Breast Cancer

Population:

438 women with invasive BC

Prognostic Effects:

	<u>% Positive</u>	<u>Survival</u>	<u>P Survival</u>
Total IR*	59.0	Worse	0.009
Total IGFIR	37.5	Worse	0.30
Phosphorylated IGFIR/IR	55.3	Worse	0.046

* present vs. absent

Law JH et al. Cancer Res 2008

Baseline (Fasting)

	<u>Metformin</u> n=237	<u>Placebo</u> n=255	p(2-tail) (Wilcoxon)
Weight (kg)	75.6 ± 15.5	75.9 ± 16.7	0.82
BMI (kg/m²)	28.2 ± 5.4	28.4 ± 6.0	0.83
Glucose (mmol/L)	5.3 ± 0.5	5.2 ± 0.6	0.31
Insulin (pmol/L)	68.4 ± 51.8	70.6 ± 63.4	0.69
НОМА*	2.02 ± 1.25	2.27 ± 2.24	0.95
Leptin (ng/ml)	15.8 ± 13.3	15.8 ± 12.6	0.90
hs-CRP (µg/L)	2.75 ± 3.93	2.68 ± 3.72	0.74

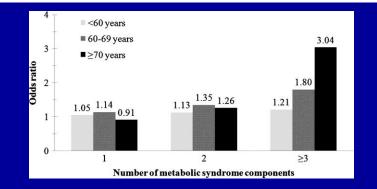
calculated from glucose and insulin, n=331 with blood draws for both on same date

Metabolic Syndrome and the Risk of Breast Cancer in Postmenopausal Women

Population

- 3,869 breast cancer patients / 4,082 controls (2 hospital-based case control studies)

Results


	First study (1983-19	94)	Second study (1991	Second study (1991-2007)		
	Cases : controls	OR (95% CI) ^{a,b}	Cases : controls	OR (95% CI) ^{a,c}	OR (95% CI) ^{a,c}	
No. of MetS components						
None	1160:1148	1 ^d	624:782	1 ^d	1 ^d	
1	594:564	1.04 (0.90-1.21)	711:867	1.13 (0.97-1.32)	1.07 (0.96-1.18)	
2	196:135	1.46 (1.14-1.85)	393: 444	1.25 (1.04-1.50)	1.24 (1.08-1.43)	
≥3	38:23	1.76 (1.03-3.02)	153:119	1.87 (1.42-2.47)	1.75 (1.37-2.22)	
P for trend		0.0021		< 0.0001	< 0.0001	

^aEstimates from logistic regression models adjusted for age, study center, study period, education, alcohol consumption, age at menarche, age at first birth, age at menopause, hormone replacement therapy use, and family history of breast cancer.

^bMetS was defined as diabetes, hypertension, hyperlipidemia, and body mass index ≥30 kg/m².

°MetS was defined as diabetes, hypertension, hypertipidemia, and waist circumference ≥88 cm or body mass index ≥30 kg/m² for women with missing information for waist circumference.

^dReference category.

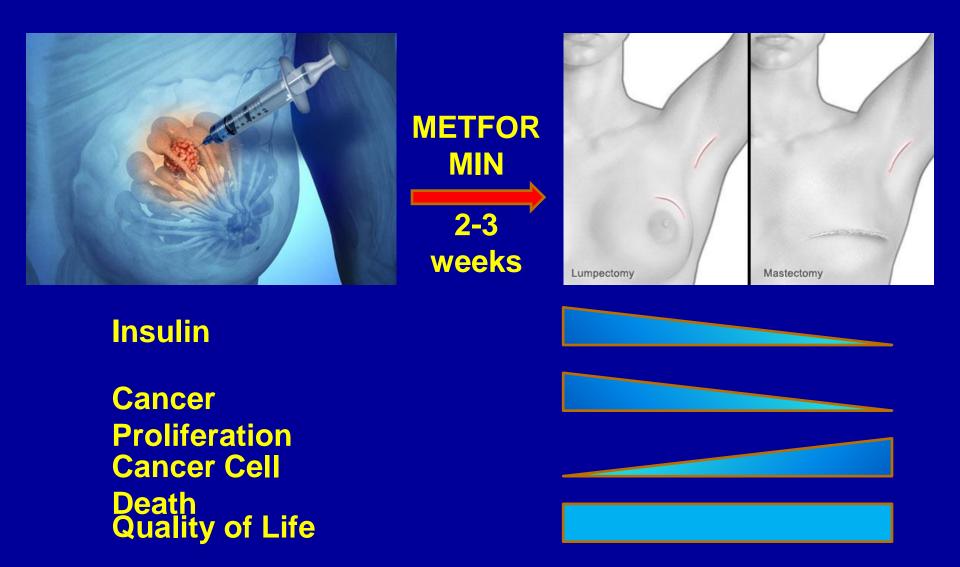
Conclusions

The metabolic syndrome is significantly associated with postmenopausal breast cancer risk

Rosato V et al Ann Oncol 2011

Effects of Calorie Reduced Diet and Physical Activity in Healthy Postmenopausal Women

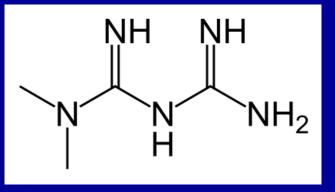
	Change at 12 Months					
	Insulin	HOMA-IR				
Diet*	-22.3%	-2.4%	-24.3%			
Physical Activity**	-7.8%	-0.9%	-8.6%			
Diet and Physical Activity	-24.0%	-2.8%	-26.4%			
Control	-1.9%	+0.2%	-1.8%			


* group based reduced calories with 10% weight loss goal

** 45 minute/day 5 days/week moderate to intense aerobic


Bolded values $p \le 0.008$

Mason C et al. Am J Prev Med 2011


Metformin Favorably Impacts Breast Cancer Biology

Metformin (Glucophage–Aventis)

Galega officinalis (Goat's rue/French lilac)

- Widely used as treatment for type II diabetes
- Well tolerated, minor GI toxicity
- Lactic acidosis, severe but rare
- Lowers blood glucose and insulin levels without causing weight gain
- AMPK activator, but mechanism uncharacterized